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Airside Congestion

Objective:
– Introduce fundamental concepts regarding 

airside delay

Topics

• The airport as a queuing system

• Dynamic behavior of queues

• Long-term characteristics of airside delay

• Non-linearity

• Annual capacity of an airport

• Measuring delay: ‘delay vs. schedule’ and 
‘delay vs. nominal time’

Reference: Chapters 11 and 20 in de Neufville 
and Odoni



Cost of Air Traffic Delays in US, 2007

Cost Component

Cost

(billion dollars)

Cost to Airlines 8.3

Cost to Passengers 16.1

Cost of Lost Demand 7.9

Total Direct Cost 32.3

Indirect Impact on GDP 4.0

Total Cost Impact 36.3

Source: Total Delay Impact Study: A Comprehensive Assessment of the 

Costs and Impacts of Flight Delay in the United States, NEXTOR 2010
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Dynamic (“Short-Run”) Behavior of Queues

Delays will occur when, over a time interval, the 
demand rate exceeds the service rate (“demand 
exceeds capacity”)

Delays may also occur when the demand rate is 
less than the service rate -- this is due to 
probabilistic fluctuations in inter-arrival and/or 
service times (i.e., to short-term surges in demand 
or to slowdowns in service)

These “probabilistic” (or “stochastic”) delays may 
be large if the demand rate is close to (although 
lower than) capacity over a long period of time
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Dynamic Behavior of Queues [2]

1. The dynamic behavior of a queue can be 
complex and difficult to predict.

2. Expected delay changes non-linearly with 
changes in the demand rate or the capacity.

3. The closer the demand rate is to capacity, the 
more sensitive expected delay becomes to 
changes in the demand rate or the capacity.

4. The time when peaks in expected delay occur 
may lag behind the time when demand peaks.

5. The expected delay at any given time depends 
on the “history” of the queue prior to that time.

6. The variance (variability) of delay also increases 
when the demand rate is close to capacity.
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Example of the Dynamic Behavior of a  Queue

0

5

10

15

20

25

30

35

40

1:
00

3:
00

5:
00

7:
00

9:
00

11
:0

0

13
:0

0

15
:0

0

17
:0

0

19
:0

0

21
:0

0

23
:0

0

D em R 1 R 2 R 3 R 4

Delays (mins)
Demand 

(movements)

30

15

45

60

75

90

105

120

Expected delay for four different levels of capacity 

(R1= capacity is 80 movements per hour; R2 = 90; R3 = 100; R4 = 110)



Page 7

Scheduled aircraft movements at LGA before and after 

2001 slot lottery
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• The green line shows the airport capacity in good weather
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Estimated average delay at LGA before and after slot 

lottery in 2001
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Behavior of Queuing Systems in the “Long Run”

The “utilization ratio”, r , measures the intensity of 

use of a queuing system:

A queuing system cannot be operated in the long 

run with a utilization ratio which exceeds 1; the 

longer such a system is operated, the longer the 

queue length and waiting time will be.

A queuing system will be able to reach a long-term 

equilibrium (“steady state”) in its operation, only if

r < 1, in the long run.
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Behavior of Queuing Systems in the “Long Run” [2]

For queuing systems that reach steady state the 
expected queue length and expected delay are 
proportional to:

Thus, as the demand rate approaches the service 
rate (or as r  1, or as “demand approaches 
capacity”) the average queue length and average 
delay increase rapidly

The “proportionality constant” increases with the 
variability of demand inter-arrival times and of 
service times

r1

1
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Behavior of Queuing Systems in the “Long Run”

The “utilization ratio”, r , measures the intensity 

of use of a queuing system:

A queuing system cannot be operated in the long 

run with a utilization ratio which exceeds 1; the 

longer such a system is operated, the longer the 

queue length and waiting time will be.

But delays may occur even when r < 1 due to 

time-variability of demand and to probabilistic 

fluctuations of demand and capacity; these 

delays can be very large when r is close to 1.
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Behavior of Queuing Systems in the “Long 

Run”[2]

In the “long run”, the average queue length and 
average delay in a queuing system are proportional 
to:

Thus, as the demand rate approaches the service 
rate (or as r  1, or as “demand approaches 
capacity”) the average queue length and average 
delay increase rapidly

The variability (= “standard deviation”) of queue 
length and delay from day to day is also 
proportional to  

r1

1

1

1- r
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Delay vs. Demand and Capacity
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High Sensitivity of Delay at High Levels of Utilization
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Delay vs. Annual Operations at Orlando Airport (MCO)
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Annual Service Volume Estimates
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Evolution of NY Delays (2007 – 2010) 
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JFK EWR

Month in 2010 July August July August

Demand -6.84% -8.02% -3.37% -5.16%

Actual Delays -46.90% -53.15% -32.93% -52.02%

Model-Predicted Delays -48.69% -51.30% -36.14% -41.56%

Jacquillat, 2012
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Tools for Estimating Delays Theoretically

The estimation of delays at an airport is usually 
sufficiently complex to require use of computer-
based models

– Dynamic queuing models: solve numerically the 
equations describing system behavior over time

– Simulation models (e.g., TAAM, SIMMOD)

For very rough approximations, simplified models 
may sometimes be useful

– Simple (“steady-state”) queuing models

– Cumulative diagrams

Note: Field data on air traffic delays increasingly 
available, getting better in quality (e.g., ASPM, 
CODA)



Page 18



Page 19

Two Types of Delay Measurement

 Two types of delay measures; cause of much confusion:

– “True” delay: the difference between the actual time it took 
to complete a flight (or a flight segment) and an estimate of 
the time (“nominal time”) that would be required in the 
absence of delay

– Delay relative to schedule

 In much of the world, a flight is counted as “late” if it arrives or 
departs (at gate) more than 15 minutes later than scheduled 
[note this is delay relative to schedule]

 In recognition of habitual “true” delays, airlines have been 
lengthening (“padding”) the scheduled duration of flights 

• improve “on-time arrival” statistics

• improve reliability and realism of their schedules

 Thus, airline scheduled flight durations include a delay 
allowance: a flight that arrives on schedule may in truth have 
been significantly delayed!



Understanding the Measurement of a Flight’s Delay
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True Delay = Buffer Time + Block Delay
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Measuring and Attributing Delay

It is difficult to use field data to measure and 
attribute delay when congestion is severe

Tightly inter-connected, complex system

Users react dynamically to delays (feedback 
effects, flight cancellations)

Geographical spreading (no single location for 
measurement), temporal propagation and 
secondary effects

Delay-free, nominal travel times are not readily 
available

Causality is unclear
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Tools for Estimating Delays Theoretically

The estimation of delays at an airport is usually 
sufficiently complex to require use of computer-
based models

– Dynamic queuing models: solve numerically the 
equations describing system behavior over time

– Simulation models (e.g., TAAM, SIMMOD)

For very rough approximations, simplified models 
may sometimes be useful

– Simple (“steady-state”) queuing models

– Cumulative diagrams

Note: Field data on air traffic delays increasingly 
available, getting better in quality (e.g., ASPM, 
CODA)



Questions? Comments?
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